当前位置:主页 > 高中一对一 > 初中全科 >

初中数学解题方法:证明弧相等的方法

作者: 网编整理

  来源:网络

  时间: 2019-09-18 17:56

  1、定义;同圆或等圆中,能够完全重合的两段弧。

  2、垂径定理:垂直于弦的直径平分这条弦,并且平分这条弦所对的两条弧。

  推论1:①平分弦(不是直径)的直径垂直弦,并且平分弦所对的两条弧。

  ②垂直平分一条弦的直线,经过圆心,并且平分弦所对的两条弧。

  ③平分一条弦所对的弧的直径,垂直平分弦,并且平分弦所对的另一条弧。

  推论2:两条平行弦所夹的弧相等

  3、圆心角、弧、圆周角之间度数关系;(圆心角=弧=2圆周角)

  4、圆周角定理的推论1;(同弧或等弧所对的圆周角相等,同圆或等圆中相等的圆周角所对的弧相等)

  十一、切线小结

  1、证明切线的三种方法:

  ⑴定义——一个交点;

  ⑵d=r(若一条直线到圆心的距离等于半径,则这条直线是圆的切线);

  ⑶切线的判定定理;(经过半径外端,并且垂直这条半径的直线是圆的切线)

  2、切线的八个性质:

  ⑴定义:唯一交点;

  ⑵切线和圆心的距离等于半径(d=r);

  ⑶切线的性质定理:圆的切线垂直于过切点的半径;

  ⑷推论1:过圆心(且垂直于切线的直线)必过切点;

  ⑸推论2:过切点(且垂直于切线的直线)必过圆心;

  ⑹切线长相等;过圆外一点作圆的两条切线,它们的切线长相等,并且这一点和圆心的连线平分两切线的夹角。

  ⑺连接两平行切线切点间的线段为直径

  ⑻经过直径两端点的切线互相平行。

  3、证明切线的两种类型:

  ⑴已知直线和圆相交于一点

  证明方法:连交点,证垂直

  ⑵未知直线和圆是否相交于哪点或没告诉交点

  证明方法:做垂直,证半径


(责任编辑:admin)

版权声明

凡本网注明“稿件来源:北京新东方学校”的所有文字、图片和音视频稿件,版权均属北京市海淀区私立新东方学校所有,转载请注明“来源:北京新东方学校”。

本网未注明“稿件来源:北京新东方学校”的文/图等稿件均为转载稿,本网转载仅基于传递更多信息之目的,并不意味着赞同转载稿的观点或证实其内容的真实性。如其他媒体、网站或个人从本网下载使用,需自负版权等法律责任。如擅自篡改为“稿件来源:北京新东方学校”,本网将依法追究法律责任。

如有本网转载稿涉及版权等问题,请作者见稿后速来电与北京新东方网联系,电话:010-62578989。

热门课程

MORE

福利试听

在线咨询

电话咨询

资料领取

新东方资料站

粉丝福利

北京新东方一对一

低至66元/小时,预约即送多重好礼

一对一福利试听课,低至66元

·  一小时试听 ·  资料礼包 ·  学业规划 ·  学情报告

预约即送:一小时试听、学业规划、资料礼包、学情报告

您已提交成功,请保持手机畅通

关闭

您已提交成功,请保持手机畅通

关闭