作者: 网编整理
来源:网络
时间: 2019-09-18 17:56
1、定义;同圆或等圆中,能够完全重合的两段弧。
2、垂径定理:垂直于弦的直径平分这条弦,并且平分这条弦所对的两条弧。
推论1:①平分弦(不是直径)的直径垂直弦,并且平分弦所对的两条弧。
②垂直平分一条弦的直线,经过圆心,并且平分弦所对的两条弧。
③平分一条弦所对的弧的直径,垂直平分弦,并且平分弦所对的另一条弧。
推论2:两条平行弦所夹的弧相等
3、圆心角、弧、圆周角之间度数关系;(圆心角=弧=2圆周角)
4、圆周角定理的推论1;(同弧或等弧所对的圆周角相等,同圆或等圆中相等的圆周角所对的弧相等)
十一、切线小结
1、证明切线的三种方法:
⑴定义——一个交点;
⑵d=r(若一条直线到圆心的距离等于半径,则这条直线是圆的切线);
⑶切线的判定定理;(经过半径外端,并且垂直这条半径的直线是圆的切线)
2、切线的八个性质:
⑴定义:唯一交点;
⑵切线和圆心的距离等于半径(d=r);
⑶切线的性质定理:圆的切线垂直于过切点的半径;
⑷推论1:过圆心(且垂直于切线的直线)必过切点;
⑸推论2:过切点(且垂直于切线的直线)必过圆心;
⑹切线长相等;过圆外一点作圆的两条切线,它们的切线长相等,并且这一点和圆心的连线平分两切线的夹角。
⑺连接两平行切线切点间的线段为直径
⑻经过直径两端点的切线互相平行。
3、证明切线的两种类型:
⑴已知直线和圆相交于一点
证明方法:连交点,证垂直
⑵未知直线和圆是否相交于哪点或没告诉交点
证明方法:做垂直,证半径
(责任编辑:admin)
①凡本网注明“稿件来源:北京新东方学校”的所有文字、图片和音视频稿件,版权均属北京市海淀区私立新东方学校所有,转载请注明“来源:北京新东方学校”。
② 本网未注明“稿件来源:北京新东方学校”的文/图等稿件均为转载稿,本网转载仅基于传递更多信息之目的,并不意味着赞同转载稿的观点或证实其内容的真实性。如其他媒体、网站或个人从本网下载使用,需自负版权等法律责任。如擅自篡改为“稿件来源:北京新东方学校”,本网将依法追究法律责任。
③如有本网转载稿涉及版权等问题,请作者见稿后速来电与北京新东方网联系,电话:010-62578989。
福利试听
在线咨询
电话咨询
资料领取
新东方资料站
粉丝福利
北京新东方一对一