当前位置:主页 > 高中一对一 > 初中全科 >

空间与图形知识点总结

作者: 网编整理

  来源:网络

  时间: 2019-02-28 13:37

  图形的认识

  (1)角

  角平分线的性质:角平分线上的点到角的两边距离相等,角的内部到两边距离相等的点在角平分线上。

  (2)相交线与平行线

  同角或等角的补角相等,同角或等角的余角相等;

  对顶角的性质:对顶角相等

  垂线的性质:

  ①过一点有且只有一条直线与已知直线垂直;

  ②直线外一点有与直线上各点连结的所有线段中,垂线段短;

  线段垂直平分线定义:过线段的中点并且垂直于线段的直线叫做线段的垂直平分线;

  线段垂直平分线的性质:线段垂直平分线上的点到线段两端点的距离相等,到线段两端点的距离相等的点在线段的垂直平分线;

  平行线的定义:在同一平面内不相交的两条直线叫做平行线;

  平行线的判定:

  ①同位角相等,两直线平行;

  ②内错角相等,两直线平行;

  ③同旁内角互补,两直线平行;

  平行线的特征:

  ①两直线平行,同位角相等;

  ②两直线平行,内错角相等;

  ③两直线平行,同旁内角互补;

  平行公理:经过直线外一点有且只有一条直线平行于已知直线。

  (3)三角形

  三角形的三边关系定理及推论:三角形的两边之和大于第三边,两边之差小于第三边;

  三角形的内角和定理:三角形的三个内角的和等于;

  三角形的外角和定理:三角形的一个外角等于和它不相邻的两个的和;

  三角形的外角和定理推理:三角形的一个外角大于任何一个和它不相邻的内角;

  三角形的三条角平分线交于一点(内心);

  三角形的三边的垂直平分线交于一点(外心);

  三角形中位线定理:三角形两边中点的连线平行于第三边,并且等于第三边的一半;

  全等三角形的判定:

  ①边角边公理(SAS)

  ②角边角公理(ASA)

  ③角角边定理(AAS)

  ④边边边公理(SSS)

  ⑤斜边、直角边公理(HL)

  等腰三角形的性质:

  ①等腰三角形的两个底角相等;

  ②等腰三角形的顶角平分线、底边上的中线、底边上的高互相重合(三线合一)

  等腰三角形的判定:

  有两个角相等的三角形是等腰三角形;

  直角三角形的性质:

  ①直角三角形的两个锐角互为余角;

  ②直角三角形斜边上的中线等于斜边的一半;

  ③直角三角形的两直角边的平方和等于斜边的平方(勾股定理);

  ④直角三角形中角所对的直角边等于斜边的一半;

  直角三角形的判定:

  ①有两个角互余的三角形是直角三角形;

  ②如果三角形的三边长a、b、c有下面关系,那么这个三角形是直角三角形(勾股定理的逆定理)。

  (4)四边形

  多边形的内角和定理:n边形的内角和等于(n≥3,n是正整数);

  平行四边形的性质:

  ①平行四边形的对边相等;

  ②平行四边形的对角相等;

  ③平行四边形的对角线互相平分;

  平行四边形的判定:

  ①两组对角分别相等的四边形是平行四边形;

  ②两组对边分别相等的四边形是平行四边形;

  ③对角线互相平分的四边形是平行四边形;

  ④一组对边平行且相等的四边形是平行四边形。

  矩形的性质:(除具有平行四边形所有性质外)

  ①矩形的四个角都是直角;

  ②矩形的对角线相等;

  矩形的判定:

  ①有三个角是直角的四边形是矩形;

  ②对角线相等的平行四边形是矩形;

  菱形的特征:(除具有平行四边形所有性质外

  ①菱形的四边相等;

  ②菱形的对角线互相垂直平分,并且每一条对角线平分一组对角;

  菱形的判定:

  四边相等的四边形是菱形;

  正方形的特征:

  ①正方形的四边相等;

  ②正方形的四个角都是直角;

  ③正方形的两条对角线相等,且互相垂直平分,每一条对角线平分一组对角;

  正方形的判定:

  ①有一个角是直角的菱形是正方形;

  ②有一组邻边相等的矩形是正方形。

  等腰梯形的特征:

  ①等腰梯形同一底边上的两个内角相等

  ②等腰梯形的两条对角线相等。

  等腰梯形的判定:

  ①同一底边上的两个内角相等的梯形是等腰梯形;

  ②两条对角线相等的梯形是等腰梯形。

  平面图形的镶嵌:

  任意一个三角形、四边形或正六边形可以镶嵌平面;

  (5)圆

  点与圆的位置关系(设圆的半径为r,点P到圆心O的距离为d):

  ①点P在圆上,则d=r,反之也成立;

  ②点P在圆内,则d<r,反之也成立;

  ③点P在圆外,则d>r,反之也成立;

  圆心角、弦和弧三者之间的关系:在同圆或等圆中,圆心角、弦和弧三者之间只要有一组相等,可以得到另外两组也相等;

  圆的确定:不在一直线上的三个点确定一个圆;

  垂径定理(及垂径定理的推论):垂直于弦的直径平分弦,并且平分弦所对的两条弧;

  平行弦夹等弧:圆的两条平行弦所夹的弧相等;

  圆心角定理:圆心角的度数等于它所对弧的度数;

  圆心角、弧、弦、弦心距之间的关系定理及推论:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦的弦心距相等;

  推论:在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两条弦心距中有一组量相等,那么它们所对应的其余各组量分别相等;

  圆周角定理:圆周角的度数等于它所对的弧的度数的一半;

  圆周角定理的推论:直径所对的圆周角是直角,反过来,的圆周角所对的弦是直径;

  切线的判定定理:经过半径的外端并且垂直于这条半径的直线是圆的切线;

  切线的性质定理:圆的切线垂直于过切点的半径;

  切线长定理:从圆外一点引圆的两条切线,这一点到两切点的线段相等,它与圆心的连线平分两切线的夹角;

  (6)尺规作图(基本作图、利用基本图形作三角形和圆)

  作一条线段等于已知线段,作一个角等于已知角;作已知角的平分线;作线段的垂直平分线;过一点作已知直线的垂线;

  (7)视图与投影

  画基本几何体(直棱柱、圆柱、圆锥、球)的三视图(主视图、左视图、俯视图);

  基本几何体的展开图(除球外)、根据展开图判断和设别立体模型;

  2.图形与变换

  图形的轴对称

  轴对称的基本性质:对应点所连的线段被对称轴平分;

  等腰三角形、矩形、菱形、等腰梯形、正多边形、圆是轴对称图形;

  图形的平移

  图形平移的基本性质:对应点的连线平行且相等;

  图形的旋转

  图形旋转的基本性质:对应点到旋转中心的距离相等,对应点与旋转中心的距离相等、对应点与旋转中心连线所成的角彼此相等;

  平行四边形、矩形、菱形、正多边形(边数是偶数)、圆是中心对称图形;

  图形的相似

  相似三角形的设别方法:①两组角对应相等;②两边对应成比例且夹角对应相等;③三边对应成比例

  相似三角形的性质:①相似三角形的对应角相等;②相似三角形的对应边成比例;③相似三角形的周长之比等于相似比;④相似三角形的面积比等于相似比的平方;

  相似多边形的性质:

  ①相似多边形的对应角相等;②相似多边形的对应边成比例;

  ③相似多边形的面积之比等于相似比的平方;

  图形的位似与图形相似的关系:两个图形相似不一定是位似图形,两个位似图形一定是相似图形;

(责任编辑:admin)

版权声明

凡本网注明“稿件来源:北京新东方学校”的所有文字、图片和音视频稿件,版权均属北京市海淀区私立新东方学校所有,转载请注明“来源:北京新东方学校”。

本网未注明“稿件来源:北京新东方学校”的文/图等稿件均为转载稿,本网转载仅基于传递更多信息之目的,并不意味着赞同转载稿的观点或证实其内容的真实性。如其他媒体、网站或个人从本网下载使用,需自负版权等法律责任。如擅自篡改为“稿件来源:北京新东方学校”,本网将依法追究法律责任。

如有本网转载稿涉及版权等问题,请作者见稿后速来电与北京新东方网联系,电话:010-62578989。

热门课程

MORE

福利试听

在线咨询

电话咨询

资料领取

新东方资料站

粉丝福利

北京新东方一对一

低至66元/小时,预约即送多重好礼

一对一福利试听课,低至66元

·  一小时试听 ·  资料礼包 ·  学业规划 ·  学情报告

预约即送:一小时试听、学业规划、资料礼包、学情报告

您已提交成功,请保持手机畅通

关闭

您已提交成功,请保持手机畅通

关闭