作者: 网编整理
来源:网络
时间: 2019-02-14 17:50
由一元二次方程求根公式为:X=(-b±√b^2-4ac)/2a
(注意:a指二次项系数,b指一次项系数,c指常数,且a≠0)
可得X1=(-b+√b^2-4ac)/2a,X2=(-b-√b^2-4ac)/2a
1.X1﹢X2=(-b+√b^2-4ac)/2a+(-b-√b^2-4ac)/2a
所以X1﹢X2=-b/a
2.X1X2=[(-b+√b^2-4ac﹚÷2a]×[(-b-√b^2-4ac﹚÷2a]
所以X1X2=c/a
(补充:X1^2+X2^2=(X1+X2)^2-2X1·X2=(-b/a)^2-2c/a=(b^2-2c)/(a^2))
(学习 )
3.X1-X2=(-b+√b^2-4ac)/2a-(-b-√b^2-4ac)/2a
又因为X1.X2的值可以互换,所以则有
X1-X2=±【(-b+√b^2-4ac)/2a-(-b-√b^2-4ac)/2a】
所以X1-X2=±(√b^2-4ac)/a
韦达定理推广的证明
设X1,X2,……,xn是一元n次方程∑AiXi=0的n个解。
则有:An(x-x1)(x-x2)……(x-xn)=0
所以:An(x-x1)(x-x2)……(x-xn)=∑AiXi(在打开(x-x1)(x-x2)……(x-xn)时好用乘法原理)
通过系数对比可得:
A(n-1)=-An(∑xi)
A(n-2)=An(∑xixi)
…
A0=[(-1)]×An×ΠXi
所以:∑Xi=[(-1)]×A(n-1)/A(n)
∑XiXj=[(-1)]×A(n-2)/A(n)
…
ΠXi=[(-1)]×A(0)/A(n)
其中∑是求和,Π是求积。
(责任编辑:admin)
①凡本网注明“稿件来源:北京新东方学校”的所有文字、图片和音视频稿件,版权均属北京市海淀区私立新东方学校所有,转载请注明“来源:北京新东方学校”。
② 本网未注明“稿件来源:北京新东方学校”的文/图等稿件均为转载稿,本网转载仅基于传递更多信息之目的,并不意味着赞同转载稿的观点或证实其内容的真实性。如其他媒体、网站或个人从本网下载使用,需自负版权等法律责任。如擅自篡改为“稿件来源:北京新东方学校”,本网将依法追究法律责任。
③如有本网转载稿涉及版权等问题,请作者见稿后速来电与北京新东方网联系,电话:010-62578989。
福利试听
在线咨询
电话咨询
资料领取
新东方资料站
粉丝福利
北京新东方一对一