作者: 网编整理
来源:网络
时间: 2019-01-31 17:06
一、重点
正、负数的概念;
正确理解数轴的概念和用数轴上的点表示有理数;
有理数的加法法则;
除法法则和除法运算。
二、难点
负数的概念、正确区分两种不同意义的量;
数轴的概念和用数轴上的点表示有理数;
异号两数相加的法则;
根据除法是乘法的逆运算,归纳出除法法则及商的符号的确定。
三、知识点、概念总结
1.正数:比0大的数叫正数。
2.负数:比0小的数叫负数。
3.有理数:
(1)凡能写成q/p(p,q为整数且p不等于0)形式的数,都是有理数。正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数。
(2)有理数的分类:
4.数轴:数轴是规定了原点、正方向、单位长度的一条直线。
5.相反数:
(1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0;
(2)相反数的和为0等价于a+b=0等价于a、b互为相反数。
6.绝对值:
(1)正数的绝对值是其本身,0的绝对值是0,负数的绝对值是它的相反数;
注意:绝对值的意义是数轴上表示某数的点离开原点的距离;
(2)绝对值可表示为:
绝对值的问题经常分类讨论;
7.有理数比大小:
(1)正数的绝对值越大,这个数越大;
(2)正数永远比0大,负数永远比0小;
(3)正数大于一切负数;
(4)两个负数比大小,绝对值大的反而小;
(5)数轴上的两个数,右边的数总比左边的数大;
(6)大数-小数>0,小数-大数<0.
8.互为倒数:乘积为1的两个数互为倒数;
注意:0没有倒数;若a≠0,那么a的倒数是1/a;若ab=1等价于a、b互为倒数;若ab=-1等价于a、b互为负倒数。
9.有理数加法法则:
(1)同号两数相加,取相同的符号,并把绝对值相加;
(2)异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值;
(3)一个数与0相加,仍得这个数。
10.有理数加法的运算律:
(1)加法的交换律:a+b=b+a;
(2)加法的结合律:(a+b)+c=a+(b+c)。
(责任编辑:admin)
①凡本网注明“稿件来源:北京新东方学校”的所有文字、图片和音视频稿件,版权均属北京市海淀区私立新东方学校所有,转载请注明“来源:北京新东方学校”。
② 本网未注明“稿件来源:北京新东方学校”的文/图等稿件均为转载稿,本网转载仅基于传递更多信息之目的,并不意味着赞同转载稿的观点或证实其内容的真实性。如其他媒体、网站或个人从本网下载使用,需自负版权等法律责任。如擅自篡改为“稿件来源:北京新东方学校”,本网将依法追究法律责任。
③如有本网转载稿涉及版权等问题,请作者见稿后速来电与北京新东方网联系,电话:010-62578989。
福利试听
在线咨询
电话咨询
资料领取
新东方资料站
粉丝福利
北京新东方一对一