作者: 网编整理
来源:网络
时间: 2020-05-26 15:47
1、平方根
定义1:一般地,如果一个正数x的平方等于a,即x2=a,那么这个正数x叫做a的算术平方根。a的算术平方根记作,读作“根号a”,a叫做被开方数。即。
规定:0的算术平方根是0。
定义2:一般地,如果一个数的平方等于a,那么这个数叫做a的平方根或二次方根。即如果x2=a,那么x叫做a的平方根。即。
定义3:求一个数a的平方根的运算,叫做开平方。
正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根。
2、立方根
定义:一般地,如果一个数的立方等于a,那么这个数叫做a的立方根或三次方根。即如果x3=a,那么x叫做a的立方根,记作。即。
求一个数的立方根的运算,叫做开立方。
正数的立方根是正数;负数的立方根是负数;0的立方根是0。
3、无理数
无限不循环小数又叫做无理数。
4、实数
有理数和无理数统称实数。即实数包括有理数和无理数。
备注:小的正整数是1,大的负整数是-1,绝对值小的数是0。
有理数关于相反数和绝对值的意义同样适合于实数。
5、实数的分类
分法一:
分法二:
6、实数的比较大小
有理数的比较大小的法则在实数范围内同样适用。
备注:遇到有理数和带根号的无理数比较大小时,让“数全部回到根号下”,再比较大小。
7、实数的运算
在实数范围内,可以进行加、减、乘、除、乘方及开方运算,而且有理数的运算法则和运算律在实数范围内仍然成立。实数范围内混合运算的顺序:①先乘方开方,再乘除,后加减;②同级运算,从左到右进行;③如有括号,先做括号内的运算,按小括号、中括号、大括号依次进行。
1、了解平方根、算术平方根、立方根的概念,会用根号表示数的平方根、算术平方根、立方根。
2、了解乘方与开方互为逆运算,会用平方运算求百以内整数的平方根,会用立方运算求百以内整数(对应的负整数)的立方根。
3、了解无理数和实数的概念,知道实数与数轴上的点一一对应,能求实数的相反数与绝对值。
4、能用有理数估计一个无理数的大致范围。
1、求一个数的算术平方根、平方根、立方根。
2、根据已知数的算术平方根(或立方根)求对应的数的算术平方根(或立方根)。
3、实数与数轴上点的对应关系,判断一个无理数的取值范围,实数的比较大小。
4、实数的分类;求一个实数的相反数、绝对值。
5、实数的加、减、乘、除、乘方、开方及混合运算(常与锐角三角函数值结合)。
1、9的算术平方根是。
2、的算术平方根是()
A、4B、±4C、2D、±2
3、4的平方根是。
4、-8的立方根是。
5、数,,,,,中,无理数有()个。
A、3B、4C、5D、6
6、已知,那么≈()
A、0.1732B、1.732C、17.32D、173.2
7、的相反数是,绝对值是。
8、的相反数是,绝对值是,倒数是。
9、比较大小:-3.14。
10、如图,数轴上点P表示的数可能是()
A、B、-C、-3.2D、-
11、估计的值()
A、在3到4之间B、在4到5之间C、在5到6之间D、在6到7之间
12、已知,则x=,y=,z=。
(责任编辑:刘汉甜)
①凡本网注明“稿件来源:北京新东方学校”的所有文字、图片和音视频稿件,版权均属北京市海淀区私立新东方学校所有,转载请注明“来源:北京新东方学校”。
② 本网未注明“稿件来源:北京新东方学校”的文/图等稿件均为转载稿,本网转载仅基于传递更多信息之目的,并不意味着赞同转载稿的观点或证实其内容的真实性。如其他媒体、网站或个人从本网下载使用,需自负版权等法律责任。如擅自篡改为“稿件来源:北京新东方学校”,本网将依法追究法律责任。
③如有本网转载稿涉及版权等问题,请作者见稿后速来电与北京新东方网联系,电话:010-62578989。
福利试听
在线咨询
电话咨询
资料领取
粉丝福利