高中数学知识点的掌握还需要大家在日常生活和学习中不断的积累,每学完一章都应将本章内容做一个框架图或在脑中过一遍,整理出这一章的知识体系。对于易混淆的知识点应分类归纳比较,有时可用联想法将其区分开。高中数学知识点的学习是一个循序渐进、逐步积累的过程,所以学习数学千万不能急躁。有的同学贪多求快,囫囵吞枣,有的同学想通过几天的“冲刺”就一蹴而就,但遇到挫折又一蹶不振。大家要知道,学习是一个长期的巩固旧知、发现新知的积累过程,决非一朝一夕可以完成的。许多优秀的同学能取得好成绩,其中一个重要原因是他们的基本功比较扎实。所以要想掌握好知识,提高数学成绩,就需要吃透课本知识,打下坚实的基础,感悟生成课本上公式、定理及法则的一些重要数学思想方法。数学思想方法是数学知识在更高层次上的抽象和概括,它蕴涵在数学知识发生、发展和应用的过程中,因此,数学思想方法考查必然与数学知识相联系。以上整理的高中数学知识点学习方法,希望能为大家提供实用的帮助,今天本文主要整理了高中数学知识点中函数的部分,详细内容如下:
1.高中数学知识点之函数的奇偶性
(1)若f(x)是偶函数,那么f(x)=f(-x);
(2)若f(x)是奇函数,0在其定义域内,则f(0)=0(可用于求参数);
(3)判断函数奇偶性可用定义的等价形式:f(x)±f(-x)=0或(f(x)≠0);
(4)若所给函数的解析式较为复杂,应先化简,再判断其奇偶性;
(5)奇函数在对称的单调区间内有相同的单调性;偶函数在对称的单调区间内有相反的单调性;
2.高中数学知识点之复合函数的有关问题
(1)复合函数定义域求法:若已知的定义域为[a,b],其复合函数f[g(x)]的定义域由不等式a≤g(x)≤b解出即可;若已知f[g(x)]的定义域为[a,b],求f(x)的定义域,相当于x∈[a,b]时,求g(x)的值域(即f(x)的定义域);研究函数的问题一定要注意定义域优先的原则。
(2)复合函数的单调性由“同增异减”判定;
3.高中数学知识点之函数图像(或方程曲线的对称性)
(1)证明函数图像的对称性,即证明图像上任意点关于对称中心(对称轴)的对称点仍在图像上;
(2)证明图像C1与C2的对称性,即证明C1上任意点关于对称中心(对称轴)的对称点仍在C2上,反之亦然;
(3)曲线C1:f(x,y)=0,关于y=x+a(y=-x+a)的对称曲线C2的方程为f(y-a,x+a)=0(或f(-y+a,-x+a)=0);
(4)曲线C1:f(x,y)=0关于点(a,b)的对称曲线C2方程为:f(2a-x,2b-y)=0;
(5)若函数y=f(x)对x∈R时,f(a+x)=f(a-x)恒成立,则y=f(x)图像关于直线x=a对称;
(6)函数y=f(x-a)与y=f(b-x)的图像关于直线x=对称;
4.高中数学知识点之函数的周期性
(1)y=f(x)对x∈R时,f(x+a)=f(x-a)或f(x-2a)=f(x)(a>0)恒成立,则y=f(x)是周期为2a的周期函数;
(2)若y=f(x)是偶函数,其图像又关于直线x=a对称,则f(x)是周期为2︱a︱的周期函数;
(3)若y=f(x)奇函数,其图像又关于直线x=a对称,则f(x)是周期为4︱a︱的周期函数;
(4)若y=f(x)关于点(a,0),(b,0)对称,则f(x)是周期为2的周期函数;
(5)y=f(x)的图象关于直线x=a,x=b(a≠b)对称,则函数y=f(x)是周期为2的周期函数;
(6)y=f(x)对x∈R时,f(x+a)=-f(x)(或f(x+a)=,则y=f(x)是周期为2的周期函数;
5.高中数学知识点之方程k=f(x)有解k∈D(D为f(x)的值域);
6.a≥f(x)恒成立a≥[f(x)]max,;a≤f(x)恒成立a≤[f(x)]min;
7.(1)(a>0,a≠1,b>0,n∈R+);(2)logaN=(a>0,a≠1,b>0,b≠1);
(3)logab的符号由口诀“同正异负”记忆;(4)alogaN=N(a>0,a≠1,N>0);
8.判断对应是否为映射时,抓住两点:(1)A中元素必须都有象且唯一;(2)B中元素不一定都有原象,并且A中不同元素在B中可以有相同的象;
9.能熟练地用定义证明函数的单调性,求反函数,判断函数的奇偶性。
10.对于反函数,应掌握以下一些结论:(1)定义域上的单调函数必有反函数;(2)奇函数的反函数也是奇函数;(3)定义域为非单元素集的偶函数不存在反函数;(4)周期函数不存在反函数;(5)互为反函数的两个函数具有相同的单调性;(5)y=f(x)与y=f-1(x)互为反函数,设f(x)的定义域为A,值域为B,则有f[f--1(x)]=x(x∈B),f--1[f(x)]=x(x∈A).
11.处理二次函数的问题勿忘数形结合;二次函数在闭区间上必有最值,求最值问题用“两看法”:一看开口方向;二看对称轴与所给区间的相对位置关系;
12.依据单调性,利用一次函数在区间上的保号性可解决求一类参数的范围问题
13.恒成立问题的处理方法:(1)分离参数法;(2)转化为一元二次方程的根的分布列不等式(组)求解。
以上整理的高中数学知识点供大家学习和参考,感兴趣的同学可以进行收藏,方便在日后学习中派上用场。高中数学知识点难度较大,高中生只有具备较强的空间想象能力、逻辑推理能力、数学运算能力才能够对所学到的数学知识有较为透彻的理解与认知,才能有效的提高数学成绩。希望本文能为大家提供帮助,更多高中数学知识点内容,请关注北京新东方学校高考网。
① 凡本网注明“稿件来源:北京新东方学校”的所有文字、图片和音视频稿件,版权均属北京市海淀区私立新东方学校所有,转载请注明“来源:北京新东方学校”。
② 本网未注明“稿件来源:北京新东方学校”的文/图等稿件均为转载稿,本网转载仅基于传递更多信息之目的,并不意味着赞同转载稿的观点或证实其内容的真实性。如其他媒体、网站或个人从本网下载使用,需自负版权等法律责任。如擅自篡改为“稿件来源:北京新东方学校”,本网将依法追究法律责任。
③ 如有本网转载稿涉及版权等问题,请作者见稿后速来电与北京新东方网联系,电话:010-62578989。
教育部发布《2021年普通高等学校招生工作规定》:全国统考于……[详情]
2020年新型冠状病毒大爆发,牵动着14亿中国人的心,虽然我们不……[详情]
每年高考结束后都会出现一些满分作文,很多同学会进行参考和……[详情]
盼望着,盼望着,“高考”的脚步近了…… 不知道你准备好在考……[详情]
前些天,天问一号成功登陆火星,创造了中国航天史上的新里程……[详情]