1/[n(n+1)]=(1/n)-[1/(n+1)]。1/[(2n-1)(2n+1)]=1/2[1/(2n-1)-1/(2n+1)]。1/[n(n+1)(n+2)]=1/2{1/[n(n+1)]-1/[(n+1)(n+2)]}。
1、数列裂项求和法例题
1/(3n-2)(3n+1)
1/(3n-2)-1/(3n+1)=3/(3n-2)(3n+1)
只要是分式数列求和bai,可采用裂项法
裂项的方法du是用zhi分母中较小因式的倒数减dao去较大因式的倒数,通分后与原通项公式相比较就可以得到所需要的常数。
裂项求和与倒序相加、错位相减、分组求和等方法一样,是解决一些特殊数列的求和问题的常用方法.这些独具特点的方法,就单个而言,确实精巧,
例子:
求和:1/2+1/6+1/12+1/20
=1/(1*2)+1/(2*3)+1/(3*4)1/(4*5)
=(1-1/2)+(1/2-1/3)+(1/3-1/4)+(1/4-1/5)
=1-1/5=4/5
2、裂项法求和公式
(1)1/[n(n+1)]=(1/n)-[1/(n+1)]
(2)1/[(2n-1)(2n+1)]=1/2[1/(2n-1)-1/(2n+1)]
(3)1/[n(n+1)(n+2)]=1/2{1/[n(n+1)]-1/[(n+1)(n+2)]}
(4)1/(√a+√b)=[1/(a-b)](√a-√b)
(5)n·n!=(n+1)!-n!
(6)1/[n(n+k)]=1/k[1/n-1/(n+k)]
(7)1/[√n+√(n+1)]=√(n+1)-√n
(8)1/(√n+√n+k)=(1/k)·[√(n+k)-√n]
2019年北京高考试题
149
点击下载
2020年北京高考试题
141
点击下载
高一数学100题
154
点击下载
高考语文古诗词
301
点击下载
2019年北京高考试题
149
点击下载
2020年北京高考试题
141
点击下载
微信扫码,立刻获取!
保存图片,识别二维码,领取资料!
① 凡本网注明“稿件来源:北京新东方学校”的所有文字、图片和音视频稿件,版权均属北京市海淀区私立新东方学校所有,转载请注明“来源:北京新东方学校”。
② 本网未注明“稿件来源:北京新东方学校”的文/图等稿件均为转载稿,本网转载仅基于传递更多信息之目的,并不意味着赞同转载稿的观点或证实其内容的真实性。如其他媒体、网站或个人从本网下载使用,需自负版权等法律责任。如擅自篡改为“稿件来源:北京新东方学校”,本网将依法追究法律责任。
③ 如有本网转载稿涉及版权等问题,请作者见稿后速来电与北京新东方网联系,电话:010-62578989。